Research Methodology

Lecture 1: Science

Professor: Dr. Libertario Demi
libertario.demi@unitn.it
General information

Me

• My office hours: Wednesdays from 14:30 to 16:30 (please take an appointment by email)

• I teach **Digital Signal Processing** and **Ultrasound Technologies for Medical Applications** at the Master of Science in Information and Communications Engineering
General information

Material

• Course Slides (available online)

Others

• Class attendance: 60% mandatory
• Exam: within approx. 2 months (hard submission deadline) from the end of the course you have to submit an IEEE format short paper (4-pages max) which describes your research and references to the literature on the topic.

https://www.ieee.org/conferences/publishing/templates.html
Exam: Modality

• Writing a short paper (4-pages max) related to your qualifying/thesis proposal
  – this paper must be written following the guidelines of the PhD School qualifying exam and using the IEEE format
    https://www.ieee.org/conferences/publishing/templates.html
  – all the writing must be original, namely there cannot be sentences which are copied from other papers. The students who will commit an act of (self)plagiarism will fail the exam. On top of this, depending on the gravity of the fact, it will be asked to expel these students from the University
  – it must be understandable by all the students of the course
  – all papers must be electronic, in PDF format

• Reviewing three papers written by the colleagues (these will be assigned to you by the end of the course)

  The examination is passed if, after no more than one iteration, the paper is graded with WEAK ACCEPT or better grade.
Exam: Grading

• A maximum of 10 out of 10 plus honors.

• Grades are computed as follows:
  2/3 paper quality, 1/3 reviewing quality.
Exam: Grading

• A maximum of 10 out of 10 plus honors.

• Grades are computed as follows: 2/3 paper quality, 1/3 reviewing quality.

1. All Papers must be submitted by May 24th (Send your paper to libertario.demi@unitn.it)

2. Review Allocation by May 31st (I will send you three papers to review)

3. Reviews Due by June 21st (you will send the review to the me and to the other reviewers, I will then send the reviews to the author. Authors need to include their email in the pdf)

4. Authors need to reply (send the rebuttal to me) to the reviewers by June 28th

5. Reviews can either accept or request additional modifications, and respond to the author by July 5th

6. Authors have to reply to the final reviews by July 12. To pass the exam the paper must be graded higher or equal to week accept.
Timetables

- March 18, 2019  13:00 - 17:00 "Garda" room (Povo 1)
- March 19, 2019  13:00 - 17:00 A203 lecture room (Povo 1)
- March 20, 2019  13:00 - 17:00 A221 lecture room (Povo 1)
- March 21, 2019  13:00 - 17:00 A207 lecture room (Povo 1)
- March 22, 2019  13:00 - 17:00 A224 lecture room (Povo 1)
What is science?
What is science?

Science is a method

Galileo Galilei (1564-1642)
What is science?

Science is a method

- Formulation of an hypothesis or theory
What is science?

Science is a method

- Formulation of an hypothesis or theory
- Gathering of data
What is science?

Science is a method

• Formulation of an hypothesis or theory

• Gathering of data

• Rigorous analysis of the data

\[ A = e^{j2\pi} - \frac{e^{j4\pi}}{e^{j6\pi} + e^{j8\pi}} - \frac{\cos(2\pi n)}{2} \]

Logic

Mathematics

Galileo Galilei (1564-1642)
What is science?

Science is a method

• Formulation of an hypothesis or theory
• Gathering of data
• Rigorous analysis of the data
• Conclusion

*Three Laws of motion*  \[ F = ma \]
What is science?

*Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of it without any practical purpose whatsoever in view.*
What is science?

There is no science without

- Questions (why?)

*Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of it without any practical purpose whatsoever in view.*
What is science?

There is no science without

• Questions (why?)

• Evidence (either experimental or theoretical)

Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of it without any practical purpose whatsoever in view.
What is science?

There is no science without

• Questions (why?)

• Evidence (either experimental or theoretical)

• Clarity and transparency of the method (reproducibility)

*Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of it without any practical purpose whatsoever in view.*
What is science?

There is no science without

- Questions (why?)
- Evidence (either experimental or theoretical)
- Clarity and transparency of the method (reproducibility)
- Honesty and acceptance of errors

Scientific discovery and scientific knowledge have been achieved only by those who have gone in pursuit of it without any practical purpose whatsoever in view.
Why science?
Why science?

Science has multiple functions

**Creative function**: it creates and promotes knowledge

1972 – The Blue Marble Apollo 17 mission
Why science?

Science has multiple functions

Creative function: it creates and promotes knowledge

Critical function: it encourages the discovery and revision of mistakes and errors

1972 – The Blue Marble Apollo 17 mission

1916 – General Relativity by Albert Einstein
Why science?

Science has multiple functions

**Creative function**: it creates and promotes knowledge

**Critical function**: it encourages the discovery and revision of mistakes and errors

**Predictive function**: it provides explanations, predictions and control of complex phenomena, true simplified models of reality

- 1972 – The Blue Marble Apollo 17 mission
- 1916 – General Relativity by Albert Einstein
- 1928 - First antibiotic (Penicillin G) by Alexander Fleming
To what does science applies?
To what does science applies?

**Areas of Science**

- **Physical Sciences:** about the fundamental nature of matter and energy
- **Biological Science:** about living things
- **Behavioral Science:** about human behavior, individuals and groups
- **Earth sciences:** about nonliving matter on Earth and elsewhere in the Universe
To what does science applies?

**Areas of Science**

**Physical Sciences:** about the fundamental nature of matter and energy

**Biological Science:** about living things

**Behavioral Science:** about human behavior, individuals and groups

**Earth sciences:** about nonliving matter on Earth and elsewhere in the Universe

Is not always possible to strictly apply the scientific method to every scientific question, *e.g. what is the effects of ionizing radiations on infants?*
What is engineering?
What is engineering?

Engineering is the **application** of knowledge acquired by means of the scientific method to the innovation, design, construction, operation, control and maintenance of structures, systems, materials, devices, processes, and organizations.
What is engineering?

Engineering is the **application** of knowledge acquired by means of the scientific method to the innovation, design, construction, operation, control and maintenance of structures, systems, materials, devices, processes, and organizations.
What is engineering?

Engineering is the **application** of knowledge acquired by means of the scientific method to the innovation, design, construction, operation, control and maintenance of structures, systems, materials, devices, processes, and organizations.

The engineer is in essence Mr. Wolf
What is engineering?

The class of engineering is then defined by the **field of application**

- Telecommunication Engineering
- Biomedical Engineering
- Electrical Engineering
- Information Engineering
- Computer Engineering
What about us?

Doctorate School in Information and Communication Technologies
What about us?

Doctorate School in Information and Communication Technologies

We deal with the technologically driven evolution of fields like ICT, BioTech, Energy, Exploration, Human Computer Interaction...
What about us?

Doctorate School in Information and Communication Technologies

We deal with the technologically driven evolution of fields like ICT, BioTech, Energy, Exploration, Human Computer Interaction…

And research new, better solutions.
What is Research?
What is Research?

Research is the process of discovery of new knowledge
What is Research?

Research is the process of discovery of new knowledge

**Basic Research**
- About fundamental properties of objects, their relationship and behavior
  - Theoretical Research
  - Experimental Research

**Applied Research**
- About the utility of objects and their behavior
  - Theoretical Research
  - Experimental Research
What is Research?

Research is the process of discovery of new knowledge

Scientific research is an attempts to describe/ explain/control real phenomena (e.g., force = mass x acceleration).
What is Research?

Research is the process of discovery of new knowledge.

Scientific research is an attempt to describe/ explain/control real phenomena (e.g., force = mass x acceleration).

But bare in mind:

There is no absolute scientific truth, and every model is wrong.
What is Research?

Research is the process of discovery of new knowledge

Scientific research is an attempts to describe/ explain/control real phenomena (e.g., force = mass x acceleration).

But bare in mind:

There is no absolute scientific truth, and every model is wrong

Scientific statements must be testable and reproducible (a paper is good if I can redo what is written in this paper)

Scientific Knowledge should represent the most accurate view of the real world that is possible at a given time, and it should be always open to correction.

It should actually look forward for it.
How do we know we are doing scientific research?
How do we know we are doing scientific research?

We stick to the methods

And of course different methods (philosophy of science) have been devised on how to acquire new knowledge
Syllogism
A categorical syllogism consists of three parts:

Major premise (A is B)
Minor premise (C is A)
Conclusion (C is B)

Example

MajP – All humans are mortal
MinP – All Europeans are humans
Conclusion – All Europeans are mortal
A categorical syllogism consists of three parts:

Major premise (A is B)
Minor premise (C is A)
Conclusion (C is B)

Example

MajP – All humans are mortal
MinP – All Europeans are humans
Conclusion – All Europeans are mortal

This is an example of **deductive reasoning** where starting from two verified facts we deduce a third.

However this is sometimes not sufficient.
Syllogism

A categorical syllogism consists of three parts:

Major premise (A is B)
Minor premise (C is A)
Conclusion (C is B)

Counter-example

MajP – All things with a mass attract each other
(univ. gravitation law)
MinP – All protons have a mass
Conclusion – All protons attract each other

This is an example of deductive reasoning where starting from two verified facts we deduce a third.

However this is sometimes not sufficient.
Empiricism

George Berkeley (1685-1753)
John Locke (1632-1704)
David Hume (1711-1776)
Empiricism

Knowledge can only derive from our senses and experience, it cannot be deduced or derived without it.
Empiricism

Knowledge can only derive from our senses and experience, it cannot be deduced or derived without it.

There are two approaches in empiricism:

- Induction (from specific to general)
- Deduction (from general to specific)
Induction

After observing a large number of A’s, and for all these A’s a specific feature B is observed then one can conclude that all A’s have the feature B

Data Collection – Measurements – Observations

Data Analysis

Generalization - Theory
Deduction

Starting from a theory generated from the observation, a specific set of measurements is performed and then analyzed to prove the theory.

Generalization - Theory

Data Collection – Measurements – Observations

Data Analysis
Induction Vs. Deduction

**Induction**: basically no guidelines to follow to perform your measurements, very useful to gain knowledge and understating of a phenomenon

**Deduction**: you need to have a theory on which to based your measurements, but then you can be much more efficient in the definition of your measurements
Positivism

Method originated from a movement characterized by the absolute trust in scientific progress and for the attempt to apply the scientific method to all the areas of knowledge.
Method originated from a movement characterized by the absolute trust in scientific progress and for the attempt to apply the scientific method to all the areas of knowledge.

1. Define the phenomenon under investigation

2. Make an hypothesis on the expected findings under defined conditions

3. Test the hypothesis experimentally

4. Analyse the results and iterate the process improving both hypothesis and experimental conditions in order to develop a theory.
Hypothesis

It is crucial to identify a good hypothesis, i.e. a clearly defined and experimentally demonstrable effects.

*When metal heats up, it expands.*
Hypothesis

It is crucial to identify a good hypothesis, i.e. a clearly defined and experimentally demonstrable effects.

*When metal heats up, it expands.*

What can go wrong with your hypothesis?

- It is wrong
- It is correct, but it will be rejected by the experimental results
Theory

A set of statements, systematically ordered, reflecting a well defined part of the real world.

Theories should be

Rational => logically consistent (no ambiguity or imprecision)
Relevant => it should be clear how it relates to the real world
Extensible => able to explain more, or better, or complement what previously known
Can we do otherwise?

So far we have always trying to develop knowledge by verifying, can we do otherwise?

Since it is true that even after verifying N observations, no matter how large is N, it is possible that the observation N+1 produces a contradiction.
Hypotheses must be falsifiable in order to be scientific; if a claim is not able to be refuted it is not a scientific claim.

1. **Define the phenomenon** under investigation

2. Make an **hypothesis** on the expected findings under defined conditions

3. **Test** the hypothesis experimentally to find out where it is not correct

4. If hypothesis is falsified then it is modified. Hypothesis is considered reliable if it has survived many attempts to falsify it

5. ** Analyse the results and iterate** the process improving both hypothesis and experimental conditions in order to develop a **theory**.
Both assume that scientific knowledge about the world can be gained only through experiments, where observations determine the validity of theories, and that there is a steady increase in our understanding of scientific phenomena.

Starting in the 50’s, revisions to these concepts have been introduced and debated
Both assume that scientific knowledge about the world can be gained only through **experiments**, where observations determine the validity of theories, and that there is a steady increase in our understanding of scientific phenomena.

Starting in the 50’s, revisions to these concepts have been introduced and debated:

- **Objective vs. subjective Science** (consider for instance scientists’ perception of the world)
- **Impact of unobservable parts on observable parts** (consider for instance medicine)
- **Paradigms** (Kuhn): Most of the time the scientists in a discipline operate under a **paradigm** (normal science).
Both assume that scientific knowledge about the world can be gained only through experiments, where observations determine the validity of theories, and that there is a steady increase in our understanding of scientific phenomena.

Starting in the 50’s, revisions to these concepts have been introduced and debated:

• Objective vs. subjective Science (consider for instance scientists’ perception of the world)

• Impact of unobservable parts on observable parts (consider for instance medicine)

• Paradigms (Kuhn): Most of the time the scientists in a discipline operate under a paradigm (normal science).

  A paradigm is a (temporarily) accepted basis of a discipline, a generally accepted schema for selecting and solving problems, basic assumptions and also explanations.

  E.g. the use of ultrasound to inspect the lung.
Changes of paradigm

Within a paradigm: if there are contradictions between specific theories, based on a paradigm, and reality, so not the paradigm is questioned but the theory and measurement methods etc.
Changes of paradigm

Within a paradigm: if there are contradictions between specific theories, based on a paradigm, and reality, so not the paradigm is questioned but the theory and measurement methods etc.

But paradigms change: from Ptolemy to Copernicus.

Paradigm change = change of scientific view of the world, scientific revolution
Post positivism: accepts that theories, background, knowledge and values of the researcher can influence what is observed. Objectivity is researched by recognizing the possible effects of biases, and both quantitative and qualitative approaches are considered to be valid.

Relativism: importance of social factor, science defined by group. There is no objective truth.

Realism: real world is separate from our perception, science allows us to get closer.
Philosophy of Science Today

Philosophy of Science is a very complex and very interesting matter.
Philosophy of Science Today

Philosophy of Science is a very complex and very interesting matter.

This is an oversimplified description.
Philosophy of Science is a very complex and very interesting matter.

This is an oversimplified description.

However, it should have provided an idea about science and about the fact that science is defined by us.
Philosophy of Science Today

Philosophy of Science is a very complex and very interesting matter.

This is an oversimplified description.

However, it should have provided an idea about science and about the fact that science is defined by us.

The most important thing which defines science is that science is open to change, there is no dogma, and that the focus is on improving our ability to interact with and beyond our self.
Philosophy of Science is a very complex and very interesting matter.

This is an oversimplified description.

However, it should have provided an idea about science and about the fact that science is defined by us.

The most impart thing which defines science is that science is open to change, there is no dogma, and that the focus is on improving our ability to interact with and beyond our self.

...and also an idea of methods of science that most of you will use during your PhD and later.
Who do we do research with?

We do it within a community, and in general terms **science is defined by the scientific community**

Science as a social institution. The goal of science is a consensus of rational opinion over the widest possible field.
Who do we do research with?

We do it within a community, and in general terms *science is defined by the scientific community*

Science as a social institution. The goal of science is a consensus of rational opinion over the widest possible field.

But there are constraints

- Education
- Tradition
- Sequence of gaining knowledge – existing theories (paradigm) may limit perception

And generally accepted norms
Scientific norms

• Communism
  *Scientific knowledge is the property of everyone*
  *Scientists have to publish their results*

• Universalism
  *There is no privileged sources of scientific knowledge*
  *The only criterion is competence*

• Disinterestedness
  *Refers to a lack of bias or a lack of self-interest*

• Originality
  *Work should be original*

• Skepticism
  *Be always critical especially with respect to your own work*
Scientific norms

- Communism
  - *Scientific knowledge is the property of everyone*
  - *Scientists have to publish their results*

- Universalism
  - *There is no privileged sources of scientific knowledge*
  - *The only criterion is competence*

- Disinterestedness
  - *Refers to a lack of bias or a lack of self-interest*

- Originality
  - *Work should be original*

- Skepticism
  - *Be always critical especially with respect to your own work*
Scientific norms

- Communism
  *Scientific knowledge is the property of everyone*
  *Scientists have to publish their results*

- Universalism
  *There is no privileged sources of scientific knowledge*
  *The only criterion is competence*

- Disinterestedness
  *Refers to a lack of bias or a lack of self-interest*

- Originality
  *Work should be original*

- Skepticism
  *Be always critical especially with respect to your own work*
Scientific norms

- **Communism**
  - *Scientific knowledge is the property of everyone*
  - *Scientists have to publish their results*

- **Universalism**
  - *There is no privileged sources of scientific knowledge*
  - *The only criterion is competence*

- **Disinterestedness**
  - *Refers to a lack of bias or a lack of self-interest*

- **Originality**
  - *Work should be original*

- **Skepticism**
  - *Be always critical especially with respect to your own work*
Scientific norms

• Communism
  *Scientific knowledge is the property of everyone*
  *Scientists have to publish their results*

• Universalism
  *There is no privileged sources of scientific knowledge*
  *The only criterion is competence*

• Disinterestedness
  *Refers to a lack of bias or a lack of self-interest*

• Originality
  *Work should be original*

• Skepticism
  *Be always critical especially with respect to your own work*
Instruments of the scientific community

- “Invisible” colleagues (communication and promotion networks)
  * Journals, Conferences, Projects

- Peer Review system
  * Independent peers review papers and editors accept or reject publications

- Reward System
  * Recognition among peers
  * Invited talks
  * Program Chair of Conferences
  * Prizes
  * Top Prizes
  * Salary
  * Contract money
Instruments of the scientific community

• “Invisible” colleagues (communication and promotion networks)
  Journals, Conferences, Projects

• Peer Review system
  Independent peers review papers and editors accept or reject a publications

• Reward System
  Recognition among peers
  Invited talks
  Program Chair of Conferences
  Prizes
  Top Prizes
  Salary
  Contract money
Instruments of the scientific community

• “Invisible” colleagues (communication and promotion networks)
  *Journals, Conferences, Projects*

• Peer Review system
  *Independent peers review papers and editors accept or reject a publications*

• Reward System
  *Recognition among peers*
  *Invited talks*
  *Program Chair of Conferences*
  *Prizes*
  *Top Prizes*
  *Salary*
  *Contract money*
Misconduct in Science
Misconduct in Science

In Science integrity is the most important thing, and this is easy to say but very hard to guarantee in practice.

Misconduct is incompatible with Science.
Misconduct in Science

In Science integrity is the most important thing, and this is easy to say but very hard to guarantee in practice.

Misconduct is punished in Science.
Misconduct in Science

Theranos

• Blood tests which required only about 1/100 to 1/1,000 of the amount of blood ordinarily needed.

• Founded in 2003 by then-19-year-old Elizabeth Holmes

• More than 700 million $ from venture capitalists and private investors,

• A $10 billion valuation in 2013 and 2014.

• In 2016 investigative reporter John Carreyrou of The Wall Street Journal questioned the validity of Theranos' technology.

• In February 2016, Theranos announced that it would permit a complete validation study of its technology.

• On March 14, 2018, Theranos, Holmes, and former company president Ramesh Balwani were charged with "massive fraud", and

• On June 15, 2018, the U.S. Attorney for the Northern District of California announced the indictment of Holmes on wire fraud and conspiracy charges. Balwani was also indicted on the same charges.
Misconduct in Science

Theranos

• Blood tests which required only about 1/100 to 1/1,000 of the amount of blood ordinarily needed.

• Founded in 2003 by then-19-year-old Elizabeth Holmes

• More than 700 million $ from venture capitalists and private investors,

• A $10 billion valuation in 2013 and 2014.

• In 2016 investigative reporter John Carreyrou of The Wall Street Journal questioned the validity of Theranos' technology.

• In February 2016, Theranos announced that it would permit a complete a validation study of its technology

• On March 14, 2018, Theranos, Holmes, and former company president Ramesh Balwani were charged with "massive fraud", and

• On June 15, 2018, the U.S. Attorney for the Northern District of California announced the indictment of Holmes on wire fraud and conspiracy charges. Balwani was also indicted on the same charges.
Misconduct in Science

Theranos

- Blood tests which required only about 1/100 to 1/1,000 of the amount of blood ordinarily needed.

- Founded in 2003 by then-19-year-old Elizabeth Holmes

- More than 700 million $ from venture capitalists and private investors,


- In 2016 investigative reporter John Carreyrou of The Wall Street Journal questioned the validity of Theranos’ technology.

- In February 2016, Theranos announced that it would permit a complete a validation study of its technology

- On March 14, 2018, Theranos, Holmes, and former company president Ramesh Balwani were charged with "massive fraud", and

- On June 15, 2018, the U.S. Attorney for the Northern District of California announced the indictment of Holmes on wire fraud and conspiracy charges. Balwani was also indicted on the same charges.
Misconduct in Science

• Fraud
  *By fabrication*
  *By falsification*

• Plagiarism
  *use of someone’s else words (ideas, pictures, ...) without giving proper credit*

• Conflict of Interest
  *avoid personal issues: Review the paper of a friend or paper of a competing group*
Misconduct in Science

- Failing to retain research data for a reasonable period
- Maintaining inadequate research records
- Refusing to give peers access to research materials
- Inappropriate statistics to enhance the significance of research findings
- Inadequately supervising research subordinates
- Misrepresenting speculations as fact
- Releasing results without providing sufficient data
- Selective reporting of research
- Interference
- Self-plagiarism
Misconduct in Science

Scientific Commandments:

• Be Honest
• Never manipulate data
• Be precise
• Be fair with regard to priority and ideas
• Be without bias with regard to the data and ideas of your rival
• Do not make compromises in trying to solve a problem

Hans Mohr, 1979
End of lecture 1