Research Methodology

Lecture 3: Paper writing

Professor: Dr. Libertario Demi
libertario.demi@unitn.it
Why papers?
Why papers?

- To put things into writing helps your own understanding of the subjects
Why papers?

• To put things into writing helps your own understanding of the subjects

• It allows sharing your ideas and results with the world
Why papers?

• To put things into writing helps your own understanding of the subjects

• It allows sharing your ideas and results with the world

• It serves as a recognition of the work done
Why papers?

- To put things into writing helps your own understanding of the subjects
- It allows sharing your ideas and results with the world
- It serves as a recognition of the work done
- Helps future researches in continuing the journey
Why papers?

- To put things into writing helps your own understanding of the subjects
- It allows sharing your ideas and results with the world
- It serves as a recognition of the work done
- Helps future researches in continuing the journey
- Creates a track record of the work done relatively to a specific subject
Where to start

• Always consider the audience
Where to start

- Always consider the audience
 - Read what has been published before in a specific journal (conference)
 1. Understand the scientific background
 2. Understand the language
 3. Understand the audience of the journal (conference)
Where to start

• Kinds

1. Short-papers (extended Abstracts)
2. Conference paper
3. Invited talks
4. Letters
5. Technical Report
6. Journal (original research) Paper
7. Fast-track submissions
8. Review paper
9. Books
A good paper must

• Be clearly written (language, structure, communication)

• Be Reproducible (it should be checkable)

• Clearly state the novelty (what is special about this paper)

• Add to the field (prove the sense of this novelty)

• Reference to previous work (show awareness and knowledge of the field, help future researchers navigate through the literature, acknowledge and promote the work done by others)
A good paper must

• Be clearly written (language, structure, communication)

• Be Reproducible (it should be checkable)

• Clearly state the novelty (what is special about this paper)

• Add to the field (prove the sense of this novelty)

• Reference to previous work (show awareness and knowledge of the field, help future researchers navigate through the literature, acknowledge and promote the work done by others)
A good paper must

- Be clearly written (language, structure, communication)
- Be Reproducible (it should be checkable)
- Clearly state the novelty (what is special about this paper)
 - Add to the field (prove the sense of this novelty)
 - Reference to previous work (show awareness and knowledge of the field, help future researchers navigate through the literature, acknowledge and promote the work done by others)
A good paper must

- Be clearly written (language, structure, communication)
- Be Reproducible (it should be checkable)
- Clearly state the novelty (what is special about this paper)
- Add to the field (prove the sense of this novelty)
- Reference to previous work (show awareness and knowledge of the field, help future researchers navigate through the literature, acknowledge and promote the work done by others)
A good paper must

• Be clearly written (language, structure, communication)

• Be Reproducible (it should be checkable)

• Clearly state the novelty (what is special about this paper)

• Add to the field (prove the sense of this novelty)

• Reference to previous work (show awareness and knowledge of the field, help future researchers navigate through the literature, acknowledge and promote the work done by others)
Check-list

Practical example

- What is my goal? I want to improve the frame rate in ultrasound imaging
 - Why? It is of interest for cardiac imaging
 - How is it done today? Parallel receive beamforming
 - What are the limitations? It does not apply to harmonic imaging, it deteriorates spatial resolution
 - What did I try to do? I try to use focused beams and OFDM
 - What have I done? I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach
 - How did I did it? Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.
 - How could I have done it? I could have done it with coding but..., I could have done it by spatial distribution but..
 - What will I do next? I will test it in-vivo
 - Does my colleague grasps what this is about?
Check-list

Practical example

• What is my goal? *I want to improve the frame rate in ultrasound imaging*
• Why? *It is of interest for cardiac imaging*
 • How is it done today? *Parallel receive beamforming*
 • What are the limitations? *It does not apply to harmonic imaging, it deteriorates spatial resolution*
 • What did I try to do? *I try to use focused beams and OFDM*
 • What have I done? *I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach*
 • How did I did it? *Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.*
 • How could I have done it? *I could have done it with coding but..., I could have done it by spatial distribution but..*
 • What will I do next? *I will test it in-vivo*
 • Does my colleague grasps what this is about?
Check-list

- **What is my goal?** *I want to improve the frame rate in ultrasound imaging*
- **Why?** *It is of interest for cardiac imaging*
- **How is it done today?** *Parallel receive beamforming*
 - What are the limitations? *It does not apply to harmonic imaging, it deteriorates spatial resolution*
 - What did I try to do? *I try to use focused beams and OFDM*
 - What have I done? *I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach*
 - How did I did it? *Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.*
 - How could I have done it? *I could have done it with coding but..., I could have done it by spatial distribution but..*
- **What will I do next?** *I will test it in-vivo*
- **Does my colleague grasps what this is about?**
Check-list

Practical example

• What is my goal? I want to improve the frame rate in ultrasound imaging
• Why? It is of interest for cardiac imaging
• How is it done today? Parallel receive beamforming
• What are the limitations? It does not apply to harmonic imaging, it deteriorates spatial resolution
 • What did I try to do? I try to use focused beams and OFDM
 • What have I done? I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach
 • How did I did it? Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.
 • How could I have done it? I could have done it with coding but..., I could have done it by spatial distribution but..
 • What will I do next? I will test it in-vivo
 • Does my colleague grasps what this is about?
Check-list

Practical example

• What is my goal? *I want to improve the frame rate in ultrasound imaging*
• Why? *It is of interest for cardiac imaging*
• How is it done today? *Parallel receive beamforming*
• What are the limitations? *It does not apply to harmonic imaging, it deteriorates spatial resolution*
• What did I try to do? *I try to use focused beams and OFDM*
• What have I done? *I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach*
• How did I did it? *Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.*
• How could I have done it? *I could have done it with coding but..., I could have done it by spatial distribution but..*
• What will I do next? *I will test it in-vivo*
• Does my colleague grasps what this is about?
Check-list

Practical example

- What is my goal? *I want to improve the frame rate in ultrasound imaging*
- Why? *It is of interest for cardiac imaging*
- How is it done today? *Parallel receive beamforming*
- What are the limitations? *It does not apply to harmonic imaging, it deteriorates spatial resolution*
- What did I try to do? *I try to use focused beams and OFDM*
- What have I done? *I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach*
 - How did I did it? Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.
 - How could I have done it? *I could have done it with coding but..., I could have done it by spatial distribution but..*
 - What will I do next? *I will test it in-vivo*
 - Does my colleague grasps what this is about?
Check-list

What is my goal? I want to improve the frame rate in ultrasound imaging
Why? It is of interest for cardiac imaging
How is it done today? Parallel receive beamforming
What are the limitations? It does not apply to harmonic imaging, it deteriorates spatial resolution
What did I try to do? I try to use focused beams and OFDM
What have I done? I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach
How did I did it? Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.
How could I have done it? I could have done it with coding but..., I could have done it by spatial distribution but..
What will I do next? I will test it in-vivo
Does my colleague grasps what this is about?

Practical example
Check-list

Practical example

- What is my goal? I want to improve the frame rate in ultrasound imaging
- Why? It is of interest for cardiac imaging
- How is it done today? Parallel receive beamforming
- What are the limitations? It does not apply to harmonic imaging, it deteriorates spatial resolution
- What did I try to do? I try to use focused beams and OFDM
- What have I done? I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach
- How did I did it? Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.
- How could I have done it? I could have done it with coding but..., I could have done it by spatial distribution but..
- What will I do next? I will test it in-vivo
- Does my colleague grasps what this is about?
Check-list

Practical example

• What is my goal? *I want to improve the frame rate in ultrasound imaging*
• Why? *It is of interest for cardiac imaging*
• How is it done today? *Parallel receive beamforming*
• What are the limitations? *It does not apply to harmonic imaging, it deteriorates spatial resolution*
• What did I try to do? *I try to use focused beams and OFDM*
• What have I done? *I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach*
• How did I did it? *Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.*
• How could I have done it? *I could have done it with coding but..., I could have done it by spatial distribution but..*
• What will I do next? *I will test it in-vivo*
• Does my colleague grasps what this is about?
Check-list

Practical example

• What is my goal? *I want to improve the frame rate in ultrasound imaging*
• Why? *It is of interest for cardiac imaging*
• How is it done today? *Parallel receive beamforming*
• What are the limitations? *It does not apply to harmonic imaging, it deteriorates spatial resolution*
• What did I try to do? *I try to use focused beams and OFDM*
• What have I done? *I tested the impact of different parameters on key imaging features and compared the performance of my approach with the existing approach*
• How did I did it? *Numerically and Experimentally, provide all the details. Software used, parameters tested, instruments used.*
• How could I have done it? *I could have done it with coding but..., I could have done it by spatial distribution but..*
• What will I do next? *I will test it in-vivo*
• Does my colleague grasps what this is about?
Structuring the paper

- Tentative title (is it a fair, comprehensive and attractive description of the content?)
Structuring the paper

• Tentative title (is it a fair, comprehensive and attractive description of the content?)
• Write the abstract (does it contain the key information of the paper?)
Structuring the paper

• Tentative title (is it a fair, comprehensive and attractive description of the content?)
• Write the abstract (does it contain the key information of the paper?)
• Write the introduction (does it put the paper into context, reference to the literature, clearly motivate the contribution and explain the content and structure of the paper?)
Structuring the paper

- Tentative title (is it a fair, comprehensive and attractive description of the content?)
- Write the abstract (does it contain the key information of the paper?)
- Write the introduction (does it put the paper into context, reference to the literature, clearly motivate the contribution and explain the content and structure of the paper?)
- Write the conclusions (What does this paper say? What will be the next step?)
Structuring the paper

Repeat and refine

- Tentative title (is it a fair, comprehensive and attractive description of the content?)
- Write the abstract (does it contain the key information of the paper?)
- Write the introduction (does it put the paper into context, reference to the literature, clearly motivate the contribution and explain the content and structure of the paper?)
- Write the conclusions (What does this paper say? What will be the next step?)
Size matters

- Title: short but not too short. Depends on the journal. One Line, few words.
Size matters

• Title: short but not too short. Depends on the journal. One Line, few words.

• Abstract: 200-300 words
Size matters

- Title: short but not too short. Depends on the journal. One Line, few words.
- Abstract: 200-300 words
- Introduction: one page (journal papers)
Size matters

• Title: short but not too short. Depends on the journal. One Line, few words.

• Abstract: 200-300 words

• Introduction: one page (journal papers)

• Body: methodology, results 7-10 pages (strongly depends on the journal)
Size matters

• Title: short but not too short. Depends on the journal. One Line, few words.

• Abstract: 200-300 words

• Introduction: one page (journal papers)

• Body: methodology, results 7-10 pages (strongly depends on the journal)

• Conclusions: 200-300 words
Size matters

• Title: short but not too short. Depends on the journal. One Line, few words.

• Abstract: 200-300 words

• Introduction: one page (journal papers)

• Body: methodology, results 7-10 pages (strongly depends on the journal)

• Conclusions: 200-300 words

• Appendixes: free choices, but length has its costs
Each part is a (narrower) filter

- Title: attract many readers
Each part is a (narrower) filter

• Title: attract many readers

• Abstract/conclusions: you want the first selection happens here
Each part is a (narrower) filter

- **Title:** attract many readers
- **Abstract/conclusions:** you want the first selection happens here
- **Body/introduction:** people interested in the work done
Each part is a (narrower) filter

- **Title**: attract many readers
- **Abstract/conclusions**: you want the first selection happens here
- **Body/introduction**: people interested in the work done
- **Appendixes**: people that want to reproduce the work done
Practical tips

• Once you have written the paper, leave it alone for a few days
Practical tips

• Once you have written the paper, leave it alone for a few days

• Ask a colleague to read it before your supervisor
Practical tips

• Once you have written the paper, leave it alone for a few days
• Ask a colleague to read it before your supervisor
• Ask your supervisor to read it before submission
Practical tips

• Once you have written the paper, leave it alone for a few days

• Ask a colleague to read it before your supervisor

• Ask your supervisor to read it before submission

• Do not get impatient to submit – Do not wait for too long
Practical tips

• Once you have written the paper, leave it alone for a few days

• Ask a colleague to read it before your supervisor

• Ask your supervisor to read it before submission

• Do not get impatient to submit – Do not wait for too long

• To find the references:
 • Ask people: colleagues, supervisor.
 • Read the literature
 • Use the references in the literature
 • Use, e.g., Scopus (check who has been citing your references)
Practical tips

Document titles

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Source</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic imaging: A feasibility study</td>
<td>Demi, L., Verweij, M., Van Dongen, K.W.A.</td>
<td>2012</td>
<td>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59(11), 6343-6378, pp. 2439-2447</td>
<td>24</td>
</tr>
<tr>
<td>Implementation of parallel transmit beamforming using orthogonal frequency division multiplexing: achievable resolution and interbeam interference</td>
<td>Demi, L., Viti, L., Kooistra, M., (...), Tortoli, P., Mischi, M.</td>
<td>2013</td>
<td>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 60(11), 6644-735, pp. 2316-2320</td>
<td>21</td>
</tr>
</tbody>
</table>
Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic imaging: A feasibility study
Demi L., Verweij M., Van Dongen K.W.A.

<table>
<thead>
<tr>
<th>Document title</th>
<th>Authors</th>
<th>Year</th>
<th>Source</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust Waveform Design of Ultrasound Arrays for Medical Imaging</td>
<td>Ghalampour, A., Sakhaei, S.M., Andargoli, S.M.H.</td>
<td>2018</td>
<td>Ultrasonic Imaging 40(6), pp. 394-408</td>
<td>0</td>
</tr>
</tbody>
</table>
The style
The style

• Every journal has its own
 (read the information for authors)
 • Font
 • Font size
 • Images
 • References
 • File formats (also for the main file)
 • Rules on structure
The style

- Every journal has its own
 (read the information for authors)
 - Font
 - Font size
 - Images
 - References
 - File formats (also for the main file)
 - Rules on structure
The style

• Every journal has its own
 (read the information for authors)
 • Font
 • Font size
 • Images
 • References
 • File formats (also for the main file)
 • Rules on structure

• English (depends on the Journal)

• The European Journal of Ultrasound requires the abstract to be written in German
The style

- Every journal has its own
 (read the information for authors)
 - Font
 - Font size
 - Images
 - References
 - File formats
 - Rules on structure

- English (depends on the Journal)

- The European Journal of Ultrasound requires the abstract to be written in German
End of lecture 3